Centre County Soil Survey Report Soil Use and Management

Engineering Uses

This section is useful to those who need information about soils used as structural material or as foundation upon which structures are built. Among those who can benefit from this section are planning commissions, town and city managers, land developers, engineers, contractors, and farmers.

Among properties of soils highly important in engineering are permeability, strength, compaction characteristics, drainage, shrink-swell potential, grain size, plasticity and reaction. Also important are depth to the water table, depth to bedrock, and slope. These properties, in various degrees and combinations, affect construction and maintenance of roads, airports, pipelines, foundations for small buildings, irrigation systems, ponds and small dams, and systems for disposal of sewage and refuse.

Information in this section of the Soil survey can be helpful to those who

- 1. Select potential residential, industrial, commercial, and recreational areas.
- 2. Evaluate alternate routes for roads, highways, pipelines, and underground cables.
- 3. Seek sources of gravel, sand, or clay.
- 4. Plan farm drainage systems, irrigation systems, ponds, terraces, and other structures for controlling water and conserving soil.
- 5. Correlate performance of structures already built with properties of the kinds of soil on which they are built for the purpose of predicting performance of structures on the same or similar kinds of soil in other ocations.
- 6. Predict the trafficability of soils for crosscountry movement of vehicles and construction equipment.
- 7. Develop preliminary estimates pertinent to construction in a particular area.

Most of the information in this section is presented in tables 7, 8, and 9, which show, respectively, several estimated soil properties significant to engineering; interpretations for various engineering uses; and results of engineering laboratory tests on soil samples.

This information, along with the soil map and other parts of this publication, can be used to make interpretations in addition to those given in tables 7 and 82 and it also can be used to make other useful maps.

This information, however, does not eliminate the need for further investigations at sites selected for engineering works, especially works that involve heavy loads or that require excavations to depths greater than those shown in the tables, generally a depth of more than 6 feet. Also, inspection of sites, especially

small ones, is needed because many delineated areas of a given soil mapping unit may contain small areas of other kinds of soil that have strongly contrasting properties and different suitabilities or limitations for soil engineering.

Some of the terms used in this soil survey have different meanings in soil science than in engineering. The Glossary defines many of these terms as they are commonly used in soil science.

Engineering soil classification systems

The two systems most commonly used in classifying samples of soils for engineering are the Unified system (8) used by the SCS engineers, Department of Defense, and others, and the

AASHTO (2) system adopted by the American Association of State Highway and Transportation Officials.

In the Unified system soils are classified according to particle-size distribution, plasticity, liquid limit, and content of organic matter. Soils are grouped in 15 classes. There are eight classes of coarse-grained soils, identified as GW, GP, GM, GC, SW, SP, SM, and SC; six classes of fine-grained soils, identified as ML, CL, OL, MH, CH, and OH; and one class of highly organic soils, identified as Pt. Soils on the borderline between two classes are designated by symbols for both classes; for example, CL-ML.

The AASHTO system is used to classify soils according to those properties that affect use in highway construction and maintenance. In this system, a soil is placed in one of seven basic groups ranging from A-1 through A-7 on the basis of grain-size distribution, liquid limit, and plasticity index. In group A-1 are gravelly soils of high bearing strength, or the best soils for subgrade (foundation). At-the other extreme, in group A-7, are clay soils that have low strength when wet and that are the poorest soils for subgrade. Where laboratory data are available to justify a further breakdown, the A-1, A-2, and A-7 groups are divided as follows: A-1-a, A-1-b, A-2-4, A-2-5, A-2-6, A-2-7, A-7-5; and A-7-6. As an additional refinement , the engineering value of a soil material can be indicated by a group index number. Group indexes range from 0 for the best material to 20 or more for the poorest. The AASHTO classification for tested soils, with group index numbers in parentheses, is shown in table 9; the estimated classification, without group index numbers, is given in table 7 for all soils mapped in the survey area.

Soil properties significant to engineering

Several estimated soil properties significant in engineering are given in table 7. These estimates are made for typical soil profiles, by layers sufficiently different to have different significance for soil engineering. The estimates are based on field observations made in the course of mapping, on test data for these and similar soils, and on experience with the same kinds of soil in other counties. Following are explanations of some of the columns in table 7.

Depth to seasonal high water table is distance from the surface of the soil to the highest level that ground water reaches in the soil in most years.

Depth to bedrock is distance from the surface of the soil to the upper surface of the rock layer.

Soil texture is described in table 7 in the standard terms used by the United States Department of Agriculture (USDA). These terms take into account relative percentages of sand, silt, and clay in soil material that is less than 2 millimeters in diameter. "Loam," for example, is soil material that contains 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If the soil contains gravel or other particles coarser than sand, an appropriate modifier is added, as for example, "gravelly loamy sand." "Sand," "silt," it clay," and some of the other terms used in USDA textural classification are defined in the Glossary of this soil survey.

Permeability is that quality of a soil that enables it to transmit water or air. It is estimated on the basis of those soil characteristics observed in the field, particularly structure and texture. The estimates in table 7 do not take into account lateral seepage or such transient soil features as plowpans and surface crusts.

Available water capacity is the ability of soils to hold water for use by most plants. It is commonly defined as the difference between the amount of water in the soil at field capacity and the amount at the wilting point of most crop plants.

Reaction is the degree Of acidity or alkalinity of a soil, expressed as pH. The pH value and terms used to describe reaction are explained in the Glossary.

Optimum moisture for compaction and maximum dry density are discussed in the section "Soil test data."

Shrink-swell potential is the relative change in volume to be expected of soil material with changes in moisture content; that is, the extent to which the soil shrinks as it dries out or swells when it gets wet. Extent of shrinking and swelling is influenced by the amount and kind of clay in the soil. Shrinking and swelling of soils cause much damage to building foundations, roads, and other structures. A high shrinkswell potential indicates a hazard to maintenance of structures built in, on, or with material having this rating.

Corrosion potential or corrosivity, as used in table 7, pertains to potential soil-induced chemical action that dissolves or weakens uncoated steel or concrete. Rate of corrosion of uncoated steel is related to such soil properties such as drainage, texture, total acidity' and electrical conductivity of the soil material. Ratings of soils for corrosivity for concrete are based mainly on soil texture and acidity. Installations that intersect soil boundaries or soil horizons are more susceptible to corrosion than installations entirely in one kind of soil or in one soil horizon. A corrosivity rating of low means that there is a low probability of soil-induced corrosion damage. A rating of high means that there is a high probability of damage, so that protective measures for steel and more resistant concrete should be used to avoid or minimize damage.

Engineering interpretations of soils

The interpretations in table 8 are based on the estimated engineering properties of soils shown in table 7, on test data for soils in this county and others nearby or adjoining, and on the experience of engineers and soil scientists with the soils of Centre County. In table 8, the ratings good, fair, poor, and unsuited are used to summarize suitability of the soils as source material for topsoil, sand and gravel, and roadfill. For highway and road location, pond reservoirs and embankments, drainage, sprinkler irrigation, terraces and diversions, grassed waterways winter grading, and pipeline construction and maintenance, table 8 lists those soil features not to be overlooked in planning, installation, and maintenance.

Following are explanations of some of the columns in table 8.

Topsoil is used for topdressing an area where vegetation is to be established and maintained. Suitability is affected mainly by ease of working and spreading the soil material when preparing a seedbed, natural fertility of the material or the response of plants when fertilizer is applied, and absence of substances toxic

to plants. Texture of the soil material and its content of stone fragments affect suitability, but also considered in the ratings is damage that results at the area from which topsoil is taken.

Sand and gravel are used in great quantities in many kinds of construction. The ratings in table 8 provide guidance about where to look for probable sources.

Embankments and dikes require soil material resistant to seepage and piping and of favorable stability, shrink-swell potential, shear strength, and compactibility. Presence of stones or organic material in a soil are among factors that are unfavorable.

Drainage is affected by such soil properties as permeability, texture, and structure; depth to claypan, rock, or other layers that influence rate of water movement; depth to the water table; slope; stability in ditchbanks; susceptibility to stream overflow; and availability of outlets for drainage.

Sprinkler irrigation of a soil is affected by such features as slope; susceptibility to stream overflow or water erosion; texture; content of stones; depth of root

zone; rate of water intake at the surface; permeability of soil layers below the surface layer and in fragipans or other layers that restrict movement of water; amount of water held available to plants; need for drainage; and depth to water table or bedrock.

Terraces and diversions are embankments, or ridges, constructed across the slope to intercept runoff and seepage so that it soaks into the soil or flows slowly to a prepared outlet. Features that

affect suitability of a soil for terraces are uniformity and steepness of slope; depth to bedrock or other unfavorable material; presence of stones; permeability; and resistance to water erosion. A soil suitable for these structures provides outlets for runoff and is not difficult to vegetate.

A soil rated as a good or fair source of sand or gravel generally has a layer at least 3 feet thick, the top of which is within a depth of 6 feet. The ratings do not take into account thickness of overburden, location of the water table, or other factors that affect mining of the materials, and neither do they indicate quality of the deposit.

Road fill is soil material used in embankments for roads. The suitability ratings reflect the predicted performance of soil after it has been placed in an embankment that has been properly compacted and provided with adequate drainage. They also reflect the relative ease of excavating the material at borrow areas.

Soil properties that most affect highway and road location are load supporting capacity and stability of the subgrade and the workability and quantity of cut and fill material available. The AASHTO and Unified classifications of the soil material and also the shrinkswell potential indicate traffic supporting capacity. Wetness and flooding affect stability of the material. Slope, depth to hard rock, content of stones and rock fragments, and wetness affect ease of excavation and amount of cut and fill needed to reach an even grade.

Pond reservoir areas hold water behind a dam or embankment. Soils suitable for pond reservoir areas have low seepage, which is related to their permeability and depth to fractured or permeable bedrock or other permeable material.

Grassed waterway layout and construction are affected by such soil properties as texture, depth, and erodibility of the soil material; presence of stones or rock outcrop; and the steepness of slopes. Other factors affecting waterways are seepage, natural drainage, available water capacity, susceptibility to siltation, and 'he ease of establishing and maintaining vegetation. Winter grading is affected chiefly by soil features that are relevant to moving, mixing, and compacting soil in road building when temperatures are below freezing.

Pipeline construction and maintenance and other shallow excavations for sewerlines, phone and power transmission lines, basements, open ditches, and cemeteries are those that generally require digging or trenching to a depth of less than 6 feet. Desirable soil properties are good workability, moderate resistance to sloughing, gentle slopes, absence of rock outcrop or big stones, and freedom from flooding or a high water table.

Soil test data

Table 9 contains engineering test data for some of the major soil series in Centre County. These tests were made to help evaluate the soils for engineering purposes. The engineering classifications given are based on data obtained by mechanical analyses and by tests to determine liquid limits and plastic limits. The mechanical analyses were made by combined sieve and hydrometer methods.

Compaction (or moisture-density) data are important in earthwork. If a soil material is compacted at successively higher moisture content, assuming that the compactive effort remains constant, the density of the compacted material increases until the optimum moisture content is reached. After that, density decreases with increase in moisture content. The highest dry density obtained in the compactive test is termed maximum dry density. As a rule, maximum strength of earthwork is obtained if the soil is compacted to the maximum dry density.

Liquid limit and plasticity index indicate the effect of water on the strength and consistence of soil material. As the moisture content of a clayey soil is increased from a dry state, the material changes from a semisolid to a plastic. If the moisture content is further increased, the material changes from a plastic to a liquid. The plastic limit is the moisture content at which the soil material changes from the semisolid to plastic; and the liquid limit, from a plastic to a liquid. The

plasticity index is the numerical difference between the liquid limit and the plastic limit. It indicates the range of moisture content within which a soil material is plastic. Liquid limit and plasticity index in table 9 are based on tests of soil samples.